
CEBKST: The Cost Efficient Based On Keying
and Secure Data Transmission for Wireless Sensor

Network
Narahari A, M. Preethi

Computer Science and Engineering
Kakatiya Institute of Technological Sciences Warangal.Andhra Pradesh, India.

Abstract--The project deals with Designing secure network
protocols and cost-efficient, for Wireless Sensor Networks
(WSNs). It is a problem because sensors are resource-limited
wireless devices. Since the communication cost is the most
dominant factor in a sensor’s energy consumption, Here we
introduce a cost efficient based on keying and secure data
transmission (CEBKST) scheme for Wireless sensor network
that significantly reduces the number of transmissions needed
for rekeying to avoid out of dated keys. In addition to the goal
of saving energy, minimal transmission is imperative for some
military applications of Wireless sensor networks where an
adversary could be monitoring the wireless spectrum.
CEBKST is a secure communication framework where sensed
data is encoded using a scheme based on a permutation code
generated via the RC4 encryption mechanism. The key to the
RC4 encryption mechanism dynamically changes as a
function of the residual virtual energy of the sensor. Thus, a
one-time dynamic key is employed for one packet only and
different keys are used for the successive packets of the
stream. The intermediate nodes along the path to the sink are
able to verify the authenticity and integrity of the incoming
packets using a predicted value of the key generated by the
sender’s virtual energy, thus requiring no need for specific
rekeying messages. CEBKST is able to efficiently detect and
filter false data injected into the network by malicious
outsiders. The CEBKST framework consists of two
operational modes, each of which is optimal for different
scenarios. In CEBKST-I, each node monitors its one-hop
neighbors where CEBKST-II statistically monitors
downstream nodes. We have evaluated CEBKST’s feasibility
and performance analytically and through simulations. Our
results show that CEBKST, without incurring transmission
overhead (increasing packet size or sending control messages
for rekeying), is able to eliminate malicious data from the
network in an energy efficient manner.

Key terms- Security, WSN Security, CEBKST, resource
constrained devices.

I. INTRODUCTION
The WSN technology is no longer nascent and will be used
in a variety of application scenarios. Typical application
areas include environmental, military, and commercial
enterprises. For example, in a battlefield scenario, sensors
may be used to detect the location of enemy sniper fire or
to detect harmful chemical agents before they reach troops.
In another potential scenario, sensor nodes forming a
network under water could be used for oceanographic data
collection, pollution monitoring, assisted navigation,
military surveillance, and mine reconnaissance operations.
Future improvements in technology will bring more sensor
applications into our daily lives and the use of sensors will
also evolve from merely capturing data to a system that can
be used for real-time compound event alerting .From a

security standpoint, it is very important to provide authentic
and accurate data to surrounding sensor nodes and to the
sink to trigger time-critical responses (e.g., troop
movement, evacuation, and first response deployment).
Protocols should be resilient against false data injected into
the network by malicious nodes. Otherwise, consequences
for propagating false data or redundant data are costly,
depleting limited network resources and wasting response
efforts. However, securing sensor networks poses unique
challenges to protocol builders because these tiny wireless
devices are deployed in large numbers, usually in
unattended environments, and are severely limited in their
capabilities and resources (e.g., power, computational
capacity, and memory). For instance, a typical sensor
operates at the frequency of 2.4 GHz, has a data rate of 250
Kbps, 128 KB of program flash memory, 512 KB of
memory for measurements, transmit power between 100
_W and 1 mW, and a communications range of 30 to 100
m. Therefore, protocol builders must be cautious about
utilizing the limited resources onboard the sensors
efficiently. In this paper, we focus on keying mechanisms
for WSNs. There are two fundamental key management
schemes for WSNs: static and dynamic. In static key
management schemes, key management functions (i.e., key
generation and distribution) are handled statically. That is,
the sensors have a fixed number of keys loaded either prior
to or shortly after network deployment. On the other hand,
dynamic key management schemes perform keying
functions (rekeying) either periodically or on demand as
needed by the network. The sensors dynamically exchange
keys to communicate.

LITERATURE SURVEY AND MOTIVATION

One significant aspect of confidentiality research in WSNs
entails designing efficient key management schemes. This
is because regardless of the encryption mechanism chosen
for WSNs, the keys must be made available to the
communicating nodes (e.g., sources and sink(s)). The keys
could be distributed to the sensors before the network
deployment or they could be redistributed (re-keying) to
nodes on demand as triggered by keying events. The former
is static key management and the latter is dynamic key
management. There are myriads of variations of these basic
schemes in the literature. In this work, we only consider
dynamic keying mechanisms in our analysis since
CEBKST uses the dynamic keying paradigm. The main
motivation behind CEBKST is that the communication cost
is the most dominant factor in a sensor’s energy
consumption. Thus, in this section, we present a simple
analysis for the re-keying cost with and without the

Narahari A, et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5285-5290

5285

transmission of explicit control messages. Re-keying with
control messages is the approach of existing dynamic
keying schemes whereas re-keying without extra control
messages is the primary feature of the CEBKST
framework.

Dynamic keying schemes go through the phase of re-
keying either periodically or on demand as needed by the
network to refresh the security of the system. With re-
keying, the sensors dynamically exchange keys that are
used for securing the communication. Hence, the energy
cost function for the keying process from a source sensor to
the sink while sending a message on a particular path with
dynamic key-based schemes can be written as follows
(assuming computation cost, E-comp, would approximately
be fixed):

Where _ is the number of packets in a message, _ is the key
refresh rate in packets per key; EKdisc is the cost of shared
key discovery with the next hop sensor after initial
deployment, and the expected number of hops. In the
dynamic key-based schemes, _ may change periodically, on
demand, or after a node-compromise. A good analytical

lower bound for E½/h is given

Where D is the end-to-end distance (m) between the sink
and the source sensor node, tr is the approximated
transmission range (m), and E½dh_ is the expected hop
distance.

Fig1.keying cost of dynamic key-based schemes based on E()

Where Enode is the approximate cost per node for key
generation and transmission, E½Ne_ is the expected
number of neighbors for a given sensor, M is the number of
key establishment messages between two nodes, and Etx
and Erx are the energy cost of transmission and reception,
respectively. Given the transmission range of sensors
(assuming bidirectional communication links for
simplicity), tr, total deployment area, A, total number of
sensors deployed, N, E½Ne_ can be computed as

BLOCK DIAGRAM

Fig2. Structure of CEBKST

II. MODULE DESCRIPTION

This project contains four major module .those
modules are follow

1. Cost efficient based on keying module.
2. Crypto module.
3. Packet transmission and reception module.
4. Performance analysis module.

Cost efficient based on keying module:
The Cost Efficient Based on Keying process

involves the creation of dynamic keys. Contrary to other
dynamic keying schemes, it does not exchange extra
messages to establish keys. A sensor node computes keys
based on its residual virtual energy of the sensor. The key is
then fed into the crypto module.
Algorithm 1. Compute Dynamic Key
1: ComputeDynamicKey(Evc; IDdr)
2: begin
3: j txIDclr
4: if j=1 then
5: Kj F(Eini,IV)
6: else
7: Kj F(k(j-1),Evc)
8: end if
9: return Kj
10: end
Deciding which nodes to watch and how many depends on
the preferred configuration of the CEBKST authentication
algorithm, which we designate as the operational mode of
the framework. Specifically, we propose two operational
modes CEBKST-I and CEBKST-II and they are discussed
in the next section. When an event is detected by a source
sensor, that node has remained alive or t units of time since
the last event (or since the network deployment if this is the
first event detected). After detection of the event, the node
sends the l-bit length packet toward the sink. In this case,
the following is the virtual cost associated with the source
node:

In the case where a node receives data from another node,
the virtual perceived energy value can be updated by

Narahari A, et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5285-5290

5286

decrementing the cost associated with the actions
performed by the sending node using the following cost
equation. Thus, assuming that the receiving node has the
initial virtual energy value of the sending node and that the
packet is successfully received and decoded associated with
a given source sensor, k, the virtual cost of the perceived
energy is computed as follows:

Where in both the equations, the small es refer to the one
bit energy costs of the associated parameter. However,
Esynch in (6) refers to a value to synchronize the source with
the watcher-forwarders toward the sink as watcher-
forwarder nodes spend more virtual energy due to packet
reception and decoding operations, which are not present in
source nodes. Hence,

Crypto module:
The crypto module in CEBKST employs a simple encoding
process, which is essentially the process of permutation of
the bits in the packet according to the dynamically created
permutation code generated via RC4. The encoding is a
simple encryption mechanism adopted for CEBKST.
However, CEBKST’s flexible architecture allows for
adoption of stronger encryption mechanisms.
The resource constraints of WSNs, traditional digital
signatures or encryption mechanisms requiring expensive
cryptography are not viable. The scheme must be simple,
yet effective. Thus, in this section, we introduce a simple
encoding operation similar to that used in the encoding
operation is essentially the process of permutation of the
bits in the packet, according to the dynamically created
permutation code via the RC4 encryption mechanism. The
key to RC4 is created by the previous module (Cost
efficient based on keying module). The purpose of the
crypto module is to provide simple confidentiality of the
packet header and payload while ensuring the authenticity
and integrity of sensed data without incurring transmission
overhead of traditional schemes. However, since the key
generation and handling process is done in another module,
CEBKST’s flexible architecture allows for adoption of
stronger encryption mechanisms in lieu of encoding. The
packets in CEBKST consists of the ID (i-bits), type (t-bits)
(assuming each node has a type identifier), and data (d-bits)
fields. Each node sends these to its next hop. However, the
sensors’ ID, type, and the sensed data are transmitted in a
pseudorandom fashion according to the result of RC4.
More specifically, the RC4 encryption algorithm takes the
key and the packet fields (byte-by byte) as inputs and
produces the result as a permutation code as depicted in
Fig. 3. The concatenation of each 8-bit output becomes the
resultant permutation code. As mentioned earlier, the key to
the RC4 mechanism is taken from the core virtual energy-
based keying module.

Fig 3. Rc4 Mechanism in CEBKST.

This is responsible for generating the dynamic key
according to the residual energy level. The resultant
permutation code is used to encode the <ID|type|data>
message. Then, an additional copy of the ID is also
transmitted in the clear along with the encoded message.
The format of the final packet to be transmitted becomes
Packet [ID, {ID, type, data} k] where {x}k constitutes
encoding x with key k. Thus, instead of the traditional
approach of sending the hash value (e.g., message digests
and message authentication codes) along with the
information to be sent, we use the result of the permutation
code value locally. When the next node along the path to
the sink receives the packet, it generates the local
permutation code to decode the packet.

Packet transmission and reception module:
The Packet transmission and reception module handles the
process of sending or receiving of encoded packets along
the path to the sink. And also get the acknowledgement
from the receiver side to conform the delivery status of the
node.

Source Node Algorithm
When an event is detected by a source node, the next step is
for the report to be secured. The source node uses the local
energy value and an IV (or previous key value if not the
first transmission) to construct the next key. As discussed
earlier, this dynamic key generation process is primarily
handled by the CEBKST module. The source sensor
fetches the current value of the energy from the CEBKST
module. Then, the key is used as input into the RC4
algorithm inside the crypto module to create a permutation
code for encoding the <ID|type|data> message. The
encoded message and the clear text ID of the originating
node are transmitted to the next hop (forwarding node or
sink) using the following format: [ID, {ID, type, data} Pc],
where {x}Pc constitutes encoding x with permutation code
Pc. The local energy value is updated and stored for use
with the transmission of the next report.

Forwarder Node Algorithm
Once the forwarding node receives the packet it will first
check its watch-list to determine if the packet came from a
node it is watching. If the node is not being watched by the
current node, the packet is forwarded without modification
or authentication. Although this node performed actions on
the packet (received and forwarded the packet), its local
virtual perceived energy value is not updated. This is done
to maintain synchronization with nodes watching it further
up the route. If the node is being watched by the current
node, the forwarding node checks the associated current
virtual energy record (Algorithm 2) stored for the sending
node and extracts the energy value to derive the key. It then
authenticates the message by decoding the message and
comparing the plaintext node ID with the encoded node ID.
If the packet is authentic, an updated virtual energy value is
stored in the record associated with the sending node. If the
packet is not authentic it is discarded. Again, the energy
value associated with the current sending node is only
updated if this node has performed encoding on the packet.

Narahari A, et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5285-5290

5287

Algorithm2. Forwarding Node Algorithm with
Communication Error Handling

Performance analysis module:
In this module we are going to consider the false injection
and eavesdropping of messages from an outside malicious
node. And also check a routing path is established from the
sources in the event region to the sink. We assume that the
path is fixed during the delivery of the data and the route
setup is secure. So the sensor network is densely populated
generate reports for the same event. This module will help
to analyze the performance of the nodes.
Simulation Parameters
We use the Georgia Tech Sensor Network Simulator
(GTSNetS) [16], which is an event-based object-oriented
sensor network simulator with C++, as our simulation
platform to perform the analysis of the CEBEKST
communication framework. The topology used for the
simulation is shown in Fig. 6, while the parameters used in
the simulation are summarized in table. Nodes were

distributed randomly in the deployment region and on
average, the distance between the source nodes and the sink
was around 25-35 hops. The Key Search Threshold value
was 15. The energy costs for different operations in the
table are computed based on the values given in [4].
However, the costs for encoding and decoding operations
are computed based on the reported values of the
implementation of RC4 [18] on real sensor devices.

Fig 3. simulation topology with GTSNetS

Fig 4. Theoretical and simulation result with varying no.of watching

nodes.

TABLE I
General simulation parameters

III. OPERATIONAL MODES OF CEBKST

The CEBKST protocol provides three security services:

Authentication, integrity, and non-repudiation the
fundamental notion behind providing these services is the
watching mechanism described before. The watching
mechanism requires nodes to store one or more records
(i.e., current energy level, bridge energy values, and Node-
Id) to be able to compute the dynamic keys used by the
source sensor nodes, to decode packets, and to catch
erroneous packets either due to communication problems or
potential attacks. However, there are costs (communication,
computation, and storage) associated with providing these

Narahari A, et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5285-5290

5288

services. In reality, applications may have different security
requirements. For instance, the security need of a military
WSN application (e.g., surveying a portion of a combat
zone) may be higher than that of a civilian application (e.g.,
collecting temperature data from a national park).

The CEBKST framework also considers this need for
flexibility and thus, supports two operational modes:
CEBKST-I and CEBKST-II. The operational mode of
CEBKST determines the number of nodes a particular
sensor node must watch. Depending on the vigilance
required inside the network, either of the operational modes
can be configured for WSN applications. The details of
both operational modes are given below.

CEBKST-I:

In the CEBKST-I operational mode, all nodes watch their
neighbors; whenever a packet is received from a neighbor
sensor node, it is decoded and its authenticity and integrity
are verified. Only legitimate packets are forwarded toward
the sink. In this mode, we assume there exists a short
window of time at initial deployment that an adversary is
not able to compromise the network, because it takes time
for an attacker to capture a node or get keys. During this
period, route initialization information may be used by each
node to decide which node to watch and a record r is stored
for each of its one-hop neighbors in its watch-list. To
obtain a neighbor’s initial energy value, a network-wise
master key can be used to transmit this value during this
period similar to the shared-key discovery phase of other
dynamic key management schemes.

Alternatively, sensors can be preloaded with the initial
energy value. When an event occurs and a report is
generated, it is encoded as a function of a dynamic key
based on the energy of the originating node and
transmitted. When the packet arrives at the next-hop node,
the forwarding node extracts the key of the sending node
(this could be the originating node or another forwarding
node) from its record. (The perceived energy value
associated with the sending node and decodes the packet.)
After the packet is decoded successfully, the plaintext ID is
compared with the decoded ID. In this process, if the
forwarding node is not able to extract the key successfully,
it will decrement the predefined virtual energy value from
the current perceived energy and tries another key before
classifying the packet as malicious (because packet drops
may have occurred due to communication errors). This
process is repeated several times; however, the total
number of trials that are needed to classify a packet as
malicious is actually governed by the value of Key Search
Threshold.

If the packet is authentic, and this hop is not the final hop,
the packet is re encoded by the forwarding node with its
own key derived from its current virtual bridge energy
level. If the packet is illegitimate, the packet is discarded.
This process continues until the packet reaches the sink.
Accordingly, illegitimate traffic is filtered before it enters
the network.

CEBKST-II:

In the CEBKST-II operational mode, nodes in the network
are configured to only watch some of the nodes in the
network. Each node randomly picks r nodes to monitor and
stores the corresponding state before deployment. As a
packet leaves the source node (originating node or
forwarding node) it passes through node(s) that watch it
probabilistically. Thus, CEBKST-II is a statistical filtering
approach like SEF and DEF. If the current node is not
watching the node that generated the packet, the packet is
forwarded. If the node that generated the packet is being
watched by the current node, the packet is decoded and the
plaintext ID is compared with the decoded ID. Similar to
CEBKST-I, if the watcher-forwarder node cannot find the
key successfully, it will try as many keys as the value of
virtual Key Search- Threshold before actually classifying
the packet as malicious. If the packet is authentic, and this
hop is not the final Destination, the original packet is
forwarded unless the node is currently bridging the
network. In the bridging case, the original packet is re
encoded with the virtual bridge energy and forwarded.
Since this node is bridging the network, both virtual and
perceived energy values are decremented accordingly.

If the packet is illegitimate, which is classified as such after
exhausting all the virtual perceived energy values within
the virtual Key Search Threshold window, the packet is
discarded. This process continues until the packet reaches
the sink.

IV. CONCLUSION
Communication is very costly for wireless sensor networks
(WSNs) and for certain WSN applications. Independent of
the goal of saving energy, it may be very important to
minimize the exchange of messages (e.g., military
scenarios). To address these concerns, we presented a
secure communication framework for WSNs called cost
efficient based on Keying. In comparison with other key
management schemes, CEBKST has the following benefits:
1) it does not exchange control messages for key renewals
and is therefore able to save more energy and is less chatty,
2) it uses one key per message so successive packets of the
stream use different keys—making CEBKST more resilient
to certain attacks (e.g., replay attacks, brute-force attacks,
and masquerade attacks), and 3) it unbundled key
generation from security services, providing a flexible
modular architecture that allows for an easy adoption of
different key-based encryption or hashing schemes.

FUTUERE ENHANCEMNET

The project has covered almost all the requirements.
Further requirements and improvements can easily be done
since the coding is mainly structured or modular in nature.
Improvements can be appended by changing the existing
modules or adding new modules. Our future work will
address insider threats and dynamic paths.

REFERENCES

1. S. Uluagac, R. Beyah, and J. Copeland, “Secure Source-Based Time
Synchronization (SOBAS) for Wireless Sensor Networks,” technical
report, Comm. Systems Center, School of Electrical and Computer
Eng., Georgia Inst. of Technology, http://users.ece.
gatech.edu/selcuk/sobas-csc-techreport.pdf, 2009.

2. R. Venugopalan et al., “Encryption Overhead in Embedded Systems
and Sensor Network Nodes: Modeling and Analysis,” Proc. ACM

Narahari A, et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5285-5290

5289

Int’l Conf. Compilers, Architecture, and Synthesis for Embedded
Systems (CASES ’03), pp. 188-197, 2003.

3. C. Kraub, M. Schneider, K. Bayarou, and C. Eckert, “STEF: A
Secure Ticket-Based En-Route Filtering Scheme for Wireless Sensor
Networks,” Proc. Second Int’l Conf. Availability, Reliability and
Security (ARES ’07), pp. 310-317, Apr. 2007.

4. C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed
Diffusion: A Scalable and Robust Communication Paradigm for
Sensor Networks,” Proc. ACM MobiCom, pp. 56-67, Aug. 2002.

5. K. Akkaya and M. Younis, “A Survey on Routing Protocols for
Wireless Sensor Networks,” Ad Hoc Networks, vol. 3, pp. 325-
349,May 2005.

6. Georgia Tech Sensor Network Simulator (GTSNetS), http://
www.ece.gatech.edu/research/labs/MANIACS/GTNetS, 2007.

7. M. Passing and F. Dressler, “Experimental Performance Evaluation
of Cryptographic Algorithms on Sensor Nodes,” Proc. IEEE Int’l
Conf. Mobile Ad-hoc and Sensor Systems, pp. 882-887, Oct. 2006.

AUTHORS

 Mr. Narahari A Graduates in Computer Science and
Engineering recieved from JNT University of Hyderabad and
Master of Technology in software engineering in kakatiya
university.

 Smt. M. Preethi Assistant Professor in Computer Science
and Engineering Department in kakatiya institute of technology
and science.

.

Narahari A, et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5285-5290

5290

